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Abstract
Predicting how distributions over discrete variables
vary over time is a common task in time series
forecasting. But whereas most approaches focus
on merely predicting the distribution at subsequent
time steps, a crucial piece of information in many
settings is to determine how this probability mass
flows between the different elements over time. We
propose a new approach to predicting such mass
flow over time using optimal transport. Specifi-
cally, we propose a generic approach to predict-
ing transport matrices in end-to-end deep learning
systems, replacing the standard softmax operation
by Sinkhorn iterations. We apply our approach to
the task of predicting how communities will evolve
over time in social network settings, and show that
the approach improves substantially over alterna-
tive prediction methods. We specifically highlight
results on the task of predicting faction evolution in
Ukrainian parliamentary voting.

1 Introduction
In this paper, we consider the task of predicting how (discrete)
distributions evolve over time. Such problems are ubiquitous
in time series forecasting, with several applications including
predicting the market share of different products [Fattah et al.,
2018], predicting energy demand by end-usage type [Wytock
and Kolter, 2013], and predicting the spread of epidemics
[Brooks et al., 2015]. However, the vast majority of these ap-
plications focus solely on predicting how the marginal proba-
bilities of interest vary over time. But in many instances, it is
of critical importance how the probability mass shifts between
the different entities over time. For example, we focus in this
paper on the specific application of predicting how factions in
a network evolve over time. In this setting, it is crucial not just
to forecast the marginal distribution of factions over time, but
how the constituencies of the factions shift between groups
over time; this can be generically expressed as the problem of
predicting the mass flow of these distributions over time.

We present a new approach to predicting such mass flow,
which we call the Sinkhorn-Flow model. At a high level,
the approach can be applied to virtually any time series fore-
casting approach, but with the difference that instead of pre-

dicting a single probability distribution at time t, we directly
predict a transport matrix that determines the distributions at
time t and t + 1, plus the transfer of probability mass be-
tween the two distributions. Algorithmically, we accomplish
this using a technique similar to the Sinkhorn network ap-
proach of [Mena et al., 2018], though we extend this ap-
proach by directly computing backpropagation through the
optimal transport map via implicit differentiation, rather than
unrolling the Sinkhorn procedure explicitly. The basic ap-
proach is to generically replace the traditional softmax oper-
ator as the ”last layer” of the time series forecasting task with
a Sinkhorn iteration that produces a transport map rather than
a single distribution.

We apply our approach to the problem of predicting fac-
tions or community evolution in networks, for two separate
real-world application areas. In the first application, we pre-
dict how the factions in the Ukrainian parliament evolve over
time. These factions are manifested in the way specific mem-
bers of parliament (MPs) vote on a bill. We show that we can
better predict the evolution of those factions than other com-
parable baselines. In the second application, we try to predict
how email communication evolves over time in a European
research institute. In both cases, we show that the proposed
method improves substantially over several competitive base-
lines, including methods that attempt to individually model
the members of the community rather than modeling the fac-
tions at the ”meta” level. This is followed by a few qualitative
results which visually show the prediction of our model. Fi-
nally, we discuss doing multi-step predictions for predicting
the flow for more than one timestamp in the future.

In total, the Sinkhorn-Flow approach substantially ad-
vances our understanding of how communities or groups
evolve in dynamic networks. And more generally, our meth-
ods provide a framework for predicting mass flow in any dy-
namical system.

2 Related Works

The basis of our proposed model comes from the optimal
transport literature. However, since in this paper, we show
our algorithm being applied to mass flow prediction in dy-
namic social networks, we also highlight related work in both
the optimal transport and community detection literature.
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2.1 Community detection and evolution

The problem of learning how factions evolve in a dynamic
system is one which underlies many similar tasks. Thus, more
specific instances of this problem have been studied by var-
ious communities. One common variant includes predicting
how communities evolve in a social network. Although the
majority of the work in this domain deals with just commu-
nity detection, a few recent works have looked into the prob-
lem of community evolution as well.

Ngonmang and Viennet [2013] take the route of predict-
ing the whole network at a future time step and then try to
detect communities in that predicted graph. Thus, it implic-
itly performs community evolution prediction. The method
involves extensive network-specific featurization like calcu-
lating the number of common neighbors between two nodes,
strength of interaction, etc. Takaffoli et al. [2014] and İlhan
and Öğüdücü [2016] also use a range of structural features
like leadership, density, cohesion and group size for detecting
community events in the social network. İlhan and Öğüdücü
[2015] take a slightly more direct approach and focus on iden-
tifying event labels such as ”survive, growth, shrink, dissolve,
split”. They use community features along with past event la-
bels in an ARIMA model to predict future event labels for
communities.

All of the approaches listed above are very specific to pre-
dicting community evolution in networks. Moreover, the
heavy use of network specific hand engineered features make
their applicability to problems belonging to other domains
difficult.

In contrast to most of these past approaches, our work fo-
cuses on predicting the flow (proportion of mass transfer) be-
tween factions, which we believe to be a more general way
of approaching the problem than predicting the fate of each
individual element.

2.2 Optimal Transport and Sinkhorn Networks

Optimal Transport (OT) [Villani, 2008] has become a widely
adopted approach [Santa Cruz et al., 2018; Salimans et al.,
2018; Genevay et al., 2018] after it was shown that one
can compute approximate Wasserstein distances extremely
quickly using Sinkhorn iterations [Cuturi, 2013].

Sinkhorn iterations [Sinkhorn, 1964] have been used in
many application areas in machine learning, from considering
robustness properties of deep classifiers [Wong et al., 2019]
to learning latent permutations. Adams and Zemel [2011] use
Sinkhorn iterations to produce doubly stochastic matrices as a
relaxation of permutation matrices. This approach is closely
followed by Mena et al. [2018] who use Sinkhorn networks
to learn latent permutations.

Following such lines of work, we propose to use Sinkhorn
networks for the problem of predicting mass flow between
different factions. Akin to the works of Mena et al. [2018]
and Salimans et al. [2018], we learn the optimal transport
plan via neural nets.

3 Methodology
3.1 Setting
Consider a time series over distributions over k elements, that
is xt ∈ ∆k, where ∆k denotes the k-dimensional simplex.
The goal of traditional forecasting approaches is to predict
xt+1 given all x1, . . . ,xt, plus any exogenous information at
time t, which we denote bt.

In our setting, however, we are interested in predicting not
just the marginals xt+1 alone, but the entire transport map
Pt such that (Pt)ij denotes the amount of probability mass
that has moved from (xt)i to (xt+1)j . This implies that
xt+1 = PTt 1 and xt = Pt1, but of course the transport ma-
trix Pt constitutes additional information over the marginal
distributions. We are particularly interested in cases where
the full transport matrix is known at training time so that the
predictive model can be trained in a supervised fashion. This
is the case, for instance, in our subsequent application to pre-
dicting community shifts. We associate a community with
each individual at each time; we, therefore, know precisely
how mass shifts from one community to another, based upon
the shifts of individual members.

3.2 Differentiable Sinkhorn iterations
We propose to learn xt+1 using Sinkhorn iterations, follow-
ing the strategy of Sinkhorn networks [Mena et al., 2018;
Adams and Zemel, 2011], though with the additional exten-
sion of using implicit differentiation to perform the backward
pass rather than explicit unrolling of the Sinkhorn operator.

To briefly review, we can write Sinkhorn operator (or
Sinkhorn iterations) on any matrix M as:

S0(M) = exp(−M)

Si(M) = Nc(Nr(Si−1(M))) (1)

where, Nr(M) = M � (M1d1
>
d ) normalizes the rows

and Nc(M) = M� (1d1
>
d M) normalizes columns (here �

represents element wise division). Sinkhorn [1964] proved
that

S = S∞(M) = lim
i→∞

Si(M)

belongs to Birkhoff polytope, which is a set of double
stochastic matrices. In practice though, instead of going till
infinity, the number of iterations i is truncated to a large
enough number l.

One practical consideration arises due to the limit in the
equation (3.2). Modern deep learning frameworks use auto-
differentiation to calculate gradients in the backpropagation
step [Abadi et al., 2015]. Having an iterative algorithm as
in equation (1) with a large enough number of iterations can
make the process of backpropagation computationally expen-
sive and can also cause memory issues. Current implemen-
tations of Sinkhorn networks [Mena et al., 2018; Adams and
Zemel, 2011] do not take any explicit action to prevent this.

We propose to instead use an implicit differentiation ap-
proach to directly backpropagate through the solution of the
Sinkhorn iteration procedure, without storing any intermedi-
ate iterations or unrolling the computation. That is, we pro-
pose a method for directly multiplying by the Jacobian ∂S

∂M .



Unlike traditional applications of the implicit function theo-
rem, however, it is difficult to derive such a procedure directly
from the Sinkhorn iterations themselves, due to the fact that
the M matrix is only used at initialization of the Sinkhorn
procedure, and isn’t included in each iteration. Thus, to de-
rive an efficient backward procedure, we first consider the op-
timization formulation of entropy regularized optimal trans-
port [Mena et al., 2018], which we write as

minimize
S

〈M,S〉 −H(S)

subject to S1 = 1

S>1 = 1

(2)

Where H(S) = −
∑
i,j Sij logSij is the entropy regulariza-

tion term. Note, usually, equation 2 is accompanied by a pa-
rameter λ. However, to keep the upcoming derivations clean,
we absorb it in the matrix M.

We want to provide a method to differentiate through the
solution of the Sinkhorn iteration, i.e, compute the Jacobian
δS
δM or more concretely, to compute the Jacobian-vector left
product for use in backpropagation.

To derive this Jacobian, we will imply implicit differentia-
tion to the optimality conditions of this optimization problem.
The resulting solution will lead to an algorithm for comput-
ing these Jacobians using an iterative method very similar to
the Sinkhorn iterations.

The KKT optimality conditions for equation (2):

M + 1+ logS? + α?1> + 1β?> = 0

S?1 = 1

S?>1 = 1

where S?, α?, and β? are optimal primal and dual variables
respectively.

Representing it in a vector form we have:

m + 1+ log s? + (1⊗ I)α + (I⊗ 1)β = 0(
1> ⊗ I

)
s? = 1(

I⊗ 1>
)
s? = 1

The standard approach for differentiating through an opti-
mization problem is to consider the Jacobian of these op-
timality conditions, and the backward pass is equivalent to
multiplying by the inverse of this Jacobian. The Jacobian of
these optimality conditions is given by the matrix: diag (1/s?) (1⊗ I) (I⊗ 1)(

1> ⊗ I
)

0 0
(I⊗ 1) 0 0


Then given some Jacobian of the loss with respect to s?,

we can compute the Jacobian with respect to m via the linear
solve: ∂`

∂m
∗
∗

 =

 diag (1/s?) (1⊗ I) (I⊗ 1)(
1> ⊗ I

)
0 0

(I⊗ 1) 0 0

−1  ∂`
∂s?

0
0



The actual forming of these matrices would be impractical,
though the linear system can be simplified substantially. First
note that by standard elimination procedures and by convert-
ing the resulting Kronecker products to more efficient matrix
operations, we can simplify this linear system to be:

∂`

∂M
= S? ◦

(
a1> + 1b> − ∂`

∂S?

)
(3)

where,

[
a
b

]
=

[
I S?

S?> I

]† [ (
S? ◦ ∂`

∂S?

)
1(

S? ◦ ∂`
∂S?

)>
1

]
Note however that this still involves the solution of the lin-

ear system involving the matrix:[
I S?

S?> I

]
This matrix is singular, but the null space (1, -1) corre-

sponds to precisely those terms that are removed when we
form the terms a1> + 1b> (i.e., we can arbitrarily add a
constant to a and subtract it from b. However, since by the
same criteria its eigenvalues are bounded between [-1, 1], we
can use a simple Richardson iteration to find the solution to
this linear system, rather than attempt via a direct solution
method. Specifically, this leads to the iteration:

a0,b0 = 0

āk+1 =

(
S? ◦ ∂`

∂S?

)
1− S?bk

b̄k+1 =

(
S? ◦ ∂`

∂S?

)>
1− S?>ak

ak+1 = āk+1 − 1>
(
āk+1 − b̄k+1

)
/(2n)

bk+1 = b̄k+1 + 1>
(
āk+1 − b̄k+1

)
/(2n)

This procedure typically converges in the same number of
iterations, or fewer, as the forward Sinkhorn iterations. Thus,
our final approach uses the above iteration to compute a and
b, and then uses (3) to compute the gradient. Each iteration of
this procedure involves only an elementwise Haramard prod-
uct and a Matrix-vector product with the S matrix, and thus
takes O(n2) computation time, the same complexity as a for-
ward Sinkhorn iteration.

3.3 Predicting the transport map
We now consider the task of using these optimal transport
predictions to predict mass flow in a dynamical system. Given
past information (as described in section 3.1), our goal is to
predict the full transport map at time t, that is

P̂t = g(bt,xt, ...,xt−m; Θ), (4)

where Pt1 = xt and PTt 1 = xt+1 as mentioned above,
and where in practice we truncate the history of the auto-
regressive portion of our model so as to only look at the past
m time steps (past exogenous information can all be bundled



into the bt term, so explicit lag terms are required there). To
make this prediction, we propose to use the function

P̂t = diag(xt)S(f(bt,xt, ...,xt−m; Θ)), (5)

where S denotes the Sinkhorn operation mentioned above,
and f denotes an arbitrary function (we use simple neural
networks in our setting) that outputs a k× k matrix. To moti-
vate this precise form, note that the Sinkhorn iteration above
produces a doubly stochastic matrix (i.e., the probability tran-
sition matrix) rather than a transport map, and to convert this
to a transport map (which has Pt1 = xt) we need to pre-
multiply by diag(xt).

Given this predicted transport map, we could define sev-
eral possible losses between it and the actual ground truth
transport map Pt, i.e., via KL divergence terms or something
similar. However, in practice it appears sufficient to simply
penalize a squared distance term between the predicted and
actual distribution. We did note, however, that it was helpful
to interpolate between a loss that penalizes the entire trans-
port map and one that penalizes just the one-step marginal
predictions. That is, our final optimization problem is given
by

minimize
Θ

T∑
t=1

(
(1− λ)

∥∥∥Pt − P̂(Θ)t

∥∥∥2

F

+λ
∥∥∥xt+1 − P̂>t (Θ)1

∥∥∥2

2

)
,

(6)

where ‖.‖F and ‖.‖2 refer to Frobenious and l2 norms re-
spectively and λ is a hyperparameter.

4 Experiments
To show the efficacy of our algorithm, Sinkhorn-Flow, we
take the problem of predicting evolution of factions in social
networks. We perform the experiments using two real world
datasets and compare our algorithm with competitive base-
lines.

4.1 Ukrainian Parliamentary Factions Prediction
The first problem is to predict how factions evolve in the an
elected parliament. Ukraine went through a political trouble-
some time due to the Euromaidan crisis and the Russian inva-
sion of Crimea in 2013-2014. As a result, the parliament also
went through a complex phase of faction evolution, making it
an interesting dataset to work with.

Unlike parliamentary voting in countries like the US, the
voting in the Ukrainian Parliament is not majorly dictated by
party lines. This leads to the formation of non-trivial factions
in the Ukrainian parliament. We try to predict how the current
set of factions xt would evolve at a future time step xt+1.

Dataset Preparation Details
We use the parliament voting data from Magelinski et al.
[2019]. It consists of voting and bills introduced from 12th
December 2012 (when the new parliament term began) to 6th
February 2014 (weeks before the revolution). We construct

Train Validation Test
Ukrainian Parliament 130 10 24
EU-email 85 5 26

Table 1: Train, test, and validation split for the two datasets used.
The small sizes of the datasets represent one of the main challenges
of this domain.

time steps out of the dataset by clubbing together three con-
secutive tabled bills to form one time step.

Our method described in section 3 assumes that the fac-
tions till time step t are already generated and given to the
algorithm as input. Hence, we skip the detailed description
of the algorithm generating the factions from the raw vot-
ing data as this does not really form the part of our algo-
rithm. However, in summary, following the literature [İlhan
and Öğüdücü, 2015; Magelinski et al., 2019], we construct a
network based on the co-voting data of MPs and apply Lou-
vain community detection algorithm [Blondel et al., 2008] to
get the factions. Finally, we ended up with 164 time steps,
which were split into train, test, and validation parts as given
in the table 1.

Architecture Details
Sinkhorn networks in their most basic form consist of a neu-
ral network followed by the operation of Sinkhorn iterations
instead of the usual softmax function. Although Sinkhorn
networks are very general and one can use LSTM or CNN-
based versions, for this task we go with simple time-lagged
networks with Markov assumption of order three. Hence, our
input consists of: finp = [xt : bt : xt−1 : bt−1 : xt−2].
Here, bt represents the exogenous features that capture the
historical mass flow. That is, bt captures the mass flow that
had happened between xt−1 and xt and bt−1 captures the
mass flow that had happened between xt−2 and xt−1. Fur-
ther, for practical reasons, we limit the number of iterations
for the Sinkhorn operator to 100. All the results presented
below use the best value hyperparameter λ in the equation 6.

Baseline Algorithms
We compare our algorithm with a few standard baselines. The
baselines can be majorly divided into two categories. In the
first category, we have baselines that are more statistically
inspired. These combine the previous flow matrices in a few
basic ways.

1. Identity: assumes that factions at time step t+ 1 would
remain exactly the same as factions at time step t.

2. Average history: predicts the flow by averaging the flow
from the previous two time steps. Note, we are averag-
ing out the previous two flows only in order to match the
Markov order 3 assumption of our Sinkhorn-Flow model
and hence doing a fair comparison.

In the second category of baselines, the algorithms try
to predict the future faction of each element (MP for the
Ukrainian Parliament Dataset) individually. These individ-
ual predictions are then combined to form the flow at a given
time step t.



Flow Cost Faction Cost
(RMSE) (1e-2)

Identity baseline 140.94 6.60
Average history 85.92 6.10

Sinkhorn-Flow (our) 82.22 5.96
LR baseline 136.57 8.47

MLP baseline 119.24 8.39

Table 2: Average testing data performance on Ukrainian parliament
voting dataset. Flow cost tries to capture the distance between the
predicted transport plan and the ground truth transport plan. Faction
Cost is the root mean squared error between predicted factions and
the ground truth factions.

1. Logistic Regression (LR): a basic logistic regression
model.

2. Multi-layer preceptron (MLP): a feed-forward neu-
ral net model with almost the same architecture as
Sinkhorn-Flow. The difference is that instead of predict-
ing a transport plan, a k-class classification is done for
predicting the factions at time step t. Again, just like LR,
predictions are made for each individual element which
are then aggregated to form predicted mass flow.

The input features for both LR and MLP baselines were the
previous m faction assignments of the given element, where
m is set to three for a fair comparison with Sinkhorn-Flow.

We compare the four baselines mentioned above with our
proposed algorithm, Sinkhorn-Flow in table 2. Sinkhorn-
Flow was run multiple times with different random seeds and
the results averaged to minimize any variations due to weight
initialization.

We compare the different baselines on two metrics:

1. Flow Cost: Frobenious distance between the predicted
transport P̂t+1 and the ground truth transport plan Pt+1.

2. Faction Cost: Root Mean Squared Error (RMSE) be-
tween the predicted factions and the ground truth fac-
tions at time step t+ 1.

4.2 Dataset 2: EU-email
We use the ”EU email department 4” dataset from [Paranjape
et al., 2017]. This dataset captures the email communication
between members of a research institution in Europe. The
changing communication pattern over time gives rise to an
implicit problem of evolving factions. The communication
over three consecutive dates were clubbed together to form
one time step. The details of the dataset are mentioned in
table 1.

The architecture and the hyperparameters used for this
dataset are same as those for the problem of Ukrainian Parlia-
ment Voting. The input features included comprise of just the
auto-regressive features of factions (xi) at time steps t, t− 1,
and t− 2.

Table 3 compares the performance of Sinkhorn-Flow with
other baselines on the EU-email dataset.

Flow Cost Faction Cost
(RMSE) (1e-2)

Identity baseline 29.44 5.18
Average history 27.5 5.64
Sinkhorn-Flow (our) 25.30 4.95
LR baseline 59.09 15.59
MLP baseline 32.05 7.14

Table 3: Average testing data performance on EU email dataset.

(a) Target Flow

(b) Predicted Flow

Figure 1: The top figure describes the actual evolution of the fac-
tions. The time steps to the left of the red-dashed lines are given and
the aim is to predict the flow (and factions) to the right of the red
line. Thus, in the bottom figure, information to the left of the red
line is the input and the factions to the right of the dashed line are
the predictions. We can see that our algorithm is able to detect that
the two factions at time step T3 would break into 3. Note: the colors
do not signify anything.

4.3 Qualitative Results
We show a few cherry-picked qualitative results (both good
and poor) for the task of predicting the evolution of fac-
tions in the Ukrainian parliament in figures 1 and 2. These
Sankey diagrams show the ground truth flow (top) and the
predicted flow of our model (bottom). In both the figures,
the first three time steps (T1, T2 and T3) were given as input
(xt−2,xt−1,xt) and the factions at time step T4 as well as the
flow between time steps T3 and T4 was predicted.

4.4 Multi-Step Prediction
Apart from predicting the flow for the immediate future, a
common use case may be of predicting the flow over multiple
time steps in the future.

A real-world example would be to predict pseudo-lineage
in cells in biological systems [Schiebinger et al., 2017] or
predicting how factions evolve over extended periods of time
in a social network.

To show the efficacy of our method for the above use case,



(a) Target Flow

(b) Predicted Flow

Figure 2: (Specifically picked poorly predictive example): Our al-
gorithm is able to predict that the mass of the third faction would
increase. Although the predicted size increase falls short of the ac-
tual size increase.

we predict k future time steps instead of just one. Thus, along
with predicting the mass flow between time steps t and t+1,
we also predict the flow between t+1 and t+2, t+2 and t+3....
t + (k-1) and t+k.

One caveat to note here is that all exogenous features (de-
noted earlier as bt) should either come as a byproduct of the
prediction or should be available for future time stamps as
well. Both of our current examples fall in the former category
as we use the predicted flow at time step t+j as exogenous fea-
tures to predict flow at time step t + j + 1.

If the above caveat about the exogenous features is satis-
fied, one can theoretically extend this process to predict flow
indefinitely. However, in any auto-regressive setting, any er-
ror in prediction is magnified in the future. This practically
limits the number of time steps which can be predicted in the
future with reasonable accuracy.

Table, 4 describes the results for predicting flows for k time
steps into the future. Specifically, it describes the summation
of flow cost for predicting ahead for 3 and 5 time steps into
the future.

4.5 Discussion
From tables 2 and 3, we can see that Sinkhorn-Flow out-
performs all the baselines in both the metrics (flow cost and
RMSE) for both the datasets. This shows that our model is
able to predict both the flow as well as the marginals better
than other techniques that were employed.

Figure 1 visually shows an example in which our model is
able to predict the flow pretty well. Here, the vertical bars
show the marginals and the grey streams show the flows. Al-
though both the ground truth (top) and the predicted (bottom)
Sankey diagrams in figure 1 look eerily similar, minute dif-
ferences can be seen upon close inspection.

Ukrainian Parliamentary Voting
Flow Cost

k = 3 k = 5
Identity baseline 451.70 749.44
Average history 342.04 612.15

Sinkhorn-Flow (ours) 324.90 593.72
LR baseline 736.92 1418.18

MLP baseline 410.57 728.746
EU-Email

k = 3 k = 5
Identity baseline 112.34 218.24
Average history 112.19 222.95

Sinkhorn-Flow (ours) 106.63 167.92
LR baseline 175.15 233.20

MLP baseline 117.01 317.33

Table 4: Flow Cost for comparing the predicted flows for three and
five time steps into the future. Note that cost is cumulative, i.e, the
cost covers the distance between the predicted flow and the ground
truth flow for 1 to k time steps.

Figure 2 shows the case in which the difference between
ground truth and the predicted flow is more obvious. Al-
though our algorithm does predict that a part of faction 2 at
time step T3 would break away and join faction 3 at time step
T4, the predicted mass is lesser than the actual mass which
got transferred in the ground truth.

Table 4 shows that our model performs reasonably well
even when we do multi-time step prediction. Although the
performances of all the models decrease as the number of
time steps to be predicted increases, our model is still able
to perform far better than all the other alternatives present.

Finally, although both the examples presented here did in-
volve an underlying network, we would like to emphasize the
fact that our algorithm works for any system which would
involve entities exchanging masses over time. Other exam-
ples of such problems might be seeing how factions evolve in
electoral districts of a nation etc.

5 Conclusions
In this paper, we have presented Sinkhorn-Flow, an approach
that leverages optimal transport to predict mass flow in a time
series forecasting setting. The technique is based upon past
work on Sinkhorn networks [Mena et al., 2018], but extends
them from an algorithmic standpoint and from an application
perspective considers these methods in the specific context of
forecasting mass flow in time series. We highlight the appli-
cation of the method to two real-world applications in com-
munity forecasting and show the approach improves substan-
tially over several competitive baseline approaches.
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