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Abstract. E-commerce websites such as Amazon, Alibaba, Flipkart,
and Walmart sell billions of products. Machine learning (ML) algorithms
involving products are often used to improve the customer experience
and increase revenue, e.g., product similarity, recommendation, and price
estimation. The products are required to be represented as features
before training an ML algorithm. In this paper, we propose an approach
called MRNet-Product2Vec for creating generic embeddings of products
within an e-commerce ecosystem. We learn a dense and low-dimensional
embedding where a diverse set of signals related to a product are explicitly
injected into its representation. We train a Discriminative Multi-task
Bidirectional Recurrent Neural Network (RNN), where the input is a
product title fed through a Bidirectional RNN and at the output, product
labels corresponding to fifteen different tasks are predicted. The task set
includes several intrinsic characteristics about a product such as price,
weight, size, color, popularity, and material. We evaluate the proposed
embedding quantitatively and qualitatively. We demonstrate that they
are almost as good as sparse and extremely high-dimensional TF-IDF
representation in spite of having less than 3% of the TF-IDF dimension.
We also use a multimodal autoencoder for comparing products from
different language-regions and show preliminary yet promising qualitative
results.

1 Introduction

Large e-commerce companies such as Amazon, Alibaba, Flipkart, and Walmart
sell billions of products through their websites. Data scientists across these
companies try to solve hundreds of machine learning (ML) problems everyday
that involve products, e.g., duplicate product detection, product recommendation,
safety classification, and price estimation. The first step towards training any ML
model usually involves creating feature representation of the relevant entities,
i.e., products in this scenario. However, searching through hundreds of data
resources within a company, identifying the relevant information, processing and
transforming a product related data to a feature vector is a tedious and time
consuming process. Furthermore, teams of data scientists performing such tasks
on a regular basis makes the overall process inefficient and wasteful.

For typical ML tasks such as classification, regression, and similarity retrieval,
a product can be represented in several ways. One of the most common approaches
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to represent a product is using an order-independent bag-of-words approach
leveraging the textual metadata associated with the product. In this approach,
one constructs a TF-IDF vector representation based on the title, description,
and bullet points of a product. Although these representations are effective as
features in a wide variety of classification tasks, they are usually high-dimensional
and sparse, e.g., a TF-IDF representation with only 300K product titles and a
minimum document frequency of 5 represents each product using more than 20K
dimensions, where typically only 0.05% of the features are non-zero. Using these
high-dimensional features creates several problems in practice1: (a) overfitting,
i.e., does not generalize to novel test data, (b) training ML algorithms using
these high-dimensional features is usually computational and storage inefficient,
(c) computing semantically meaningful nearest neighbors is not straightforward
and (d) they cannot be directly used in downstream ML algorithms such as Deep
Neural Networks (DNN) as that increases the number of parameters significantly.
On the other hand, using dense and low-dimensional features could alleviate
these issues. In this paper, our goal is to create a generic, low-dimensional
and dense product representation which can work almost as effectively as the
high-dimensional TF-IDF representation.

We propose a novel discriminative Multi-task Learning Framework where we
inject different kinds of signals pertaining to a product into its embedding. These
signals capture different static aspects, such as color, material, weight, size, sub-
category, target-gender, and dynamic aspects such as price, popularity, and views
of a product. Each signal is captured by formulating a classification/regression
or decoding task depending on the type of the corresponding label. The pro-
posed architecture contains a Bidirectional Recurrent Neural Network (RNN)
with LSTM cells as the input layer which takes the sequence of words in a
product title as input and creates a hidden representation, which we refer to
as “product embeddings”. During training phase, the embeddings are fed into
multiple classification/regression/decoding units corresponding to the training
tasks. The full multi-task network is trained jointly in an end-to-end manner. We
refer to the proposed approach as MRNet (Discriminative Multi-task Recurrent
Neural Network) and the embeddings created using this method are referred to
as MRNet-Product2Vec. Section 3 elaborates more on this.

Products sold on e-commerce websites usually belong to multiple Product
Groups (PG) such as furniture, jewelry, clothes, books, home, and sports items.
Some of the signals which we inject within products are PG-specific. For example,
the weights of home items have a very different distribution than the weights of
jewelry. Similarly, sizes of clothes (L, XL, XXL etc.) could be quite different from
the sizes of furniture (king, queen etc.). We believe that a common embedding
for all products across all PGs will not be able to capture the intra-PG variations.
Hence, we initially learn the embeddings in a PG-specific manner and then use
a sparse autoencoder to project the PG-specific embeddings to a PG-agnostic
space. This ensures that MRNet-Product2Vec can also be used when the train or

1 Curse of dimensionality [5]



3

test data for an ML model belong to multiple PGs. Section 3.2 provides more
details on this.

We encode different signals about products in the embeddings such that the
embeddings are as generic as possible. However, creating embeddings that will
work well for every product related ML task without further feature processing
is not easy and perhaps impossible. So, we create these embeddings keeping two
particular e-commerce use-cases in mind: (a) Anyone building an ML model
with products can use these embeddings to build a good baseline model with
little effort. (b) Someone who has a set of task specific features can use these
embeddings as a means to augment with the generic signals captured in these
representations. Our end-goal is to provide a generic feature representation for
each product in an e-commerce system, such that data scientists don’t have to
spend days or months to build their first prototype.

We evaluate MRNet-Product2Vec in both quantitative and qualitative ways.
MRNet-Product2Vec is applied to five different classification tasks: (i) plugs, (ii)
Ship In Its Own Container (SIOC), (iii) browse category, (iv) ingestible and (v)
SIOC with unseen population (Sect. 4.1). We compare MRNet-Product2Vec with
a TF-IDF bag-of-words (sparse high-dimensional) on title words and show that
in spite of having a much lower dimension than TF-IDF, MRNet-Product2Vec is
comparable to TF-IDF representation. It performs almost as good as TF-IDF in
two of these tasks, better than TF-IDF in two of these tasks and worse than TF-
IDF in the remaining task. In Sect. 4.2 and 4.3, we provide the qualitative analysis
of MRNet-Prod2Vec. In Sect. 5, we use a variant of multimodal autoencoder [8]
that can be used to compare products sold in different language-regions/countries.
Preliminary qualitative results using this approach are also provided.

2 Prior Work

There have been several prior works on entity embeddings using deep neural
networks. Perhaps the most famous work on entity embeddings is the word2vec
method [6], where continuous and distributed vector representations of words
are learned based on their co-occurrences in a large text corpus. There are also a
few prior research works for creating product embeddings for recommendation.
Prod2Vec [2] uses a word2vec-like approach that learns vector representations
of products from email receipt logs by using a notion of a purchase sequence
as a “sentence” and products within the sequence as “words”. The product
representations are used for recommendation. The authors in [9] propose Meta-
Prod2Vec, which extends the Prod2Vec [2] loss by including additional interaction
terms involving products’ meta-data. However, these embeddings are specifically
fine-tuned for a predefined end-task, i.e., recommendation and may not perform
well on a wide variety of product related ML tasks.

Traditionally multi-task learning has been used when one or all of the individ-
ual tasks have smaller training datasets and the tasks are somehow correlated [1].
The training data from other correlated tasks should improve the learning of a
particular task. However, we do not have any paucity of data and the tasks which
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are used to train MRNet-Product2Vec are largely uncorrelated. We have used
“unrelated” multi-task learning such that the learned representations are generic.
To the best of our knowledge, this is the first work, that performs multi-task
learning in an RNN to explicitly encode different kinds of static and dynamic
signals for a generic entity embedding.

3 Proposed Approach

In this section, we describe the proposed embedding MRNet-Product2Vec. In
MRNet-Product2Vec, we feed the vector representation of each word in a product
title to a Bidirectional RNN. We use word2vec [6] to create a dense and compact
representation of all words in the product catalog. A large corpus of text is
created comprising the titles and descriptions of 143 million randomly selected
products from the catalog. We use Gensim2 to learn a 128 dimensional word2vec
representation of all the words in the corpus which occur at least 10 times.

3.1 MRNet-Product2Vec

The proposed embeddings MRNet-Product2Vec are created by explicitly intro-
ducing different kinds of static and dynamic signals into the embeddings using
a Discriminative Multi-task Bidirectional RNN. The goal of injecting different
signals is to create embeddings which are as generic as possible. We believe that
the learned embeddings will be effective in any ML task, which is correlated with
one or more of the tasks for which we train our embeddings (see Sect. 4.3).

We describe fifteen different tasks which are used to learn our product em-
beddings. These tasks were selected primarily because we thought that the
corresponding signals are intrinsic and should be included in a generic product
embedding. However, these set of tasks are not exhaustive and may not capture
all possible information about the products. Future research could incorporate
more tasks during training and also study if dense product embeddings of a small
fixed dimension (say, 128 or 256) can capture more signals effectively.

The set of present tasks can be grouped in several ways. Some of these
capture static information that are unlikely to change over the lifetime of a
product, e.g., size, weight, and material. Some are also dynamic which are likely
to change every week or month, e.g., price or number of views. Some of these
tasks are classification problems, where some others are regression or decoding.
We summarize all the tasks in Table 1 and omit the details due to lack of space.
Color, size, material, subcategory, and item type are formulated as multi-class
classification problems where the most frequent ones are treated as individual
classes and the remaining ones are grouped as one class. Rest of the classification
tasks are binary. As mentioned earlier, this list of tasks may not be exhaustive.
However, they capture a wide variety of aspects regarding a product and effective
encoding of these signals should create embeddings that are generic enough to
address a wide class of ML problems pertaining to products.
2 https://radimrehurek.com/gensim/
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Table 1: Tasks used to train MRNet-Product2Vec.
Static Dynamic

Classification
Color, Size, Material,

Subcategory, Item Type, Hazardous,
Batteries, High Value, Target Gender

Offer, Review

Regression Weight Price, View Count
Decoding TF-IDF representation (5000 dim.)

The block diagram of MRNet-Product2Vec is shown in Fig. 1a. The word2vec
representation of each word in a product title is fed through a Bidirectional RNN
layer containing LSTM cells. The hidden layer representation from the forward
and backward RNNs are concatenated to create the product embedding which is
used to predict multiple task labels as described above. The network is trained
jointly with all of these tasks.

Word 1 Word  2 Word 3 Word T

Embedding layer

Task 1 Task 2 Task 3 Task 4 Task 5

Classification Regression Decoding

(a) MRNet-Product2Vec for PG-specific
embeddings.

(b) Sparse Autoencoder for PG-agnostic
embeddings.

Fig. 1: Architecture of different components of MRNet-Product2Vec.

Let us assume that the word2vec representation of words in a product title
with T words are denoted as {x1, x2,..., xT }. We use a Bidirectional RNN, which
has a forward RNN and a backward RNN. Let us assume that hf

t and hb
t denote

the hidden states of the forward and backward RNN respectively at time t. The
recursive equations for the forward and the backward RNN are given by:

hf
t = φ(W fxt + Ufhf

t−1) (1)

hb
t = φ(W bxt + U bhb

t−1) (2)

Where W f and W b are the feedforward weight matrices for the forward and
backward RNNs respectively. Uf and U b are the recursive weight matrices for
the forward and backward RNNs respectively. φ is usually a nonlinearity such
as tanh or RELU. We use hT = [hf

T ,h
b
T ], as the final hidden representation

of a product after all words in a product title have been fed through both the
forward and backward RNNs. RNNs are trained using Backpropagation Through
Time (BPTT) [10]. Although RNNs are designed to model sequential data, it has
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been found that simple RNNs are unable to model long sequences because of the
vanishing gradient problem [3]. Long Short Term Memory units [4] are designed
to tackle this issue where along with the standard recursive and feed-forward
weight matrices there are input, forget, and output gates, which control the flow
of information and can remember arbitrarily long sequences. In practice, it has
been observed that RNNs with LSTM units are better than traditional RNNs
(Equation 1 and 2). Hence, we use LSTM units in the forward and backward
RNNs. We skip the details of LSTM units and suggest interested readers to look
at this article3 for an intuitive explanation on LSTMs.

Suppose, we want to train our network with N different tasks. Out of the
N tasks, N c are classification, Nr are regression and Nd are decoding, i.e.,
N c+Nr +Nd = N . lcm denotes the loss of the m-th classification task, lrp denotes
the loss corresponding to the p-th regression task and ldq denotes the loss of the
q-th decoding task. The losses corresponding to all the tasks are normalized such
that one task with a higher loss cannot dominate the other tasks. While training
we optimize the following loss which is the sum of the losses of all N tasks.

L =

m=Nc∑
m=1

lcm +

p=Nr∑
p=1

lrp +

q=Nd∑
q=1

ldq (3)

The hidden representation hT corresponding to a product is projected to
multiple output vectors (on for n-th task) using task specific weights and biases
(Equation 4). The loss is computed as a function of the output vector and the
target vector according to the type of a task. For example, if the task is a
five-way classification, hT is projected to a five dimensional output, followed
by a softmax layer and eventually a cross-entropy loss is computed between
the softmax output and the true target labels. For the regression task, hT is
projected to a scalar and a squared loss is computed with respect to the true
score. Similarly, in the decoding task, hT is projected to a 5000 dimensional
vector on and a squared loss is computed between the projected representation
and the target 5000 dimensional TF-IDF representation.

on =WnhT + bn (4)

Optimization in Deep Multi-task Neural Network: The cost function in
Equation (3) can be optimized in two different ways:
– Joint Optimization: At each iteration of training, update all weights of the
network using gradients computed with respect to the total loss as defined
in Equation (3). However, if each training example does not have labels
corresponding to all the tasks, training in this way may not be possible.

– Alternating Optimization: At each iteration of training, randomly choose
one of the tasks and optimize the network with respect to the loss corresponding
to that task only. In this case, only the weights which correspond to that
particular task and the weights of task-invariant layers (the Bidirectional RNN

3 http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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in our case) are updated. This style of training is useful when we do not have
all task labels for a product. However, the training might be biased towards a
specific task if the number of training examples corresponding to that task is
significantly higher than other tasks.

While we were training MRNet, it was difficult to obtain all task labels for each
product. Hence, alternating optimization was an obvious choice for us. We sample
training batches from each task uniformly to avoid biasing towards any specific
task.

3.2 Product Group (PG) Agnostic Embeddings

While training the proposed network, we trained a separate model for each PG
because the label distribution could be very different across PGs. For example,
the median price and the price range of jewelry is very different from that of
books. Similarly, the materials used in clothes (cotton, polyester etc.) are different
from that of kitchen items which are usually made of aluminium, metal or glass.
If we train one model across all PGs, the embeddings are unlikely to capture the
finer intra-PG variations in their representations. Hence, we build one model for
each PG. In this paper, we train 23 different models for 23 different PGs.

The PG-specific embeddings can be used for any ML problem which is either
PG-specific (all train and test data are from a particular PG) or when there are a
large number of training examples from each PG such that separate PG-specific
models can be trained. However, in many practical situations, none of the above
might be true. Hence, it is also important to have product embeddings which
are PG-agnostic such that ML models can be trained with products spanning
multiple PGs. We handle this problem by training a sparse autoencoder [7] that
projects the PG-specific embeddings to a PG-agnostic space (Fig. 1b).

Let us assume that each PG-specific embedding has a dimension d and there
are total G (23 in our case) PG-specific embeddings. First, we represent the
embeddings from PG g, using a Gd dimensional vector, where the PG-specific
embedding is placed at the index range (g − 1)d+ 1 : gd and the rest are filled
with zeros. This vector is called xga. We train a sparse autoencoder where we
reconstruct xga through a fully connected network containing a hidden layer
of dimension 2d. The hidden layer representation is used as the PG-agnostic
embedding. We enforce sparsity such that the autoencoder can learn interesting
structures from the data and does not end up learning an identity function.

4 Experimental Results

In this section, we evaluate MRNet-Product2Vec in various ways. In Sect. 4.1,
we discuss the quantitative results while qualitative studies are discussed in Sect.
4.2 and Sect. 4.3.
Architecture and Framework Details: In MRNet-Product2Vec, there is one
layer of Bidirectional RNN containing LSTM nodes followed by multiple classifica-
tion/regression/decoding units. We train each PG-specific model with maximum
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one million training samples from a PG corresponding to each training task. It
took around 30 minutes to train each epoch using one Grid K520 GPU. While
training the PG-agnostic embeddings, we used 500K randomly chosen products
from each PG (total 11.5 million for 23 PGs). The sparse autoencoder took
around 20 minutes per epoch while training.

4.1 Quantitative Analysis

Product embeddings can be created in many possible ways. They can capture
different kinds of signals about products and can have varying performance in
different end-tasks. To get a sense of the efficacy of MRNet-Product2Vec, we
consider five different classification tasks. These tasks are different from the tasks
that are used to train MRNet-Product2Vec.

1. Plugs: In this binary classification problem, the goal is to predict if a product
has an electrical plug or not. This dataset has 205,535 labeled products. Here
we perform five-fold cross validation and report the average AUC.

2. SIOC: This classification problem tries to predict if a product can ship in its
own container (SIOC) provided by the seller or if the e-commerce company
needs to provide an additional container for this product. This is also a binary
classification problem. This dataset has 296,961 labeled examples. Five-fold
cross validation is performed and the average AUC over five-folds is reported.

3. Browse Categories: This is a multi-class classification problem where prod-
ucts from the PG toy are classified into 75 different website browse categories
(e.g.: baby toys, puzzles, and outdoor toys). There are a total of 150,197
samples in this dataset. We perform five-fold cross validation and report the
average accuracy.

4. Ingestible Classification: We apply MRNet-Product2Vec on a product
classification problem which predicts if a product is ingestible or not. However,
only 1500 training samples are available for learning a classifier. We perform
five-fold cross validation and report the average AUC over five-folds.

5. SIOC (unseen population): We believe that if the test data distribution is
significantly different from the train data distribution, dense embeddings such
as MRNet-Product2Vec should perform better than sparse/high-dimensional
TF-IDF representations. We simulate that by modifying the SIOC dataset
using the following steps. First, we split the full dataset into fixed training and
test parts. We filter out each test product for which the maximum intersection
of it’s title with any training product title is larger than a threshold th. All
the remaining products are used as the test data set. The lower the threshold,
the difference between the test and the train data distribution increases. We
fixed a training dataset of 150K examples and used th = 0.2 with 271 test
examples (106 +ve and 165 -ve). We report the AUC.

We compare MRNet-Product2Vec with the sparse and high-dimensional TF-IDF
representation of product titles for all the five classification tasks. The sparse
TF-IDF representation for each classification task was created using only the
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training examples corresponding to that task. We use the PG-agnostic version
of MRNet-Product2Vec (dimensionality: 256) for SIOC, PLUGs, ingestible and
SIOC (unseen population) as the data spanned multiple PGs. We use the PG-
specific version (dimensionality: 128) of MRNet-Product2Vec for browse category
classification as all the samples were from the same PG, i.e., toy. We use MRNet-
Product2Vec and TF-IDF in two different classifiers, Logistic Regression and
Random Forest, and report the evaluation metric for both of them in Table 2.
We observe that on Plugs and SIOC, MRNet-Product2Vec is almost as good as
sparse and high-dimensional TF-IDF in spite of having a much lower dimension
than that of TF-IDF. However, on Browse Categories, MRNet-Product2Vec
performs much worse than TF-IDF. This happens because out of the 15 tasks,
only the subcategory classification task is somewhat related to browse categories.
Hence, the browse category related information that is encoded in MRNet-
Product2Vec is not sufficient enough for this “hard” 75-class classification task.
MRNet-Product2Vec performs better than sparse and high-dimensional TF-IDF
on ingestible and SIOC (unseen population). Since the dense embeddings are
semantically more meaningful, i.e., it knows that a chair and a sofa are similar
objects, they should be able to learn classifiers even from smaller training datasets
(such as ingestible) and generalize well for unseen test population (SIOC with
unseen population). However, sparse and high-dimensional TF-IDF is not as
effective in these scenarios. Overall, we observe that MRNet-Product2Vec is
mostly comparable to TF-IDF in spite of having less than 3% of the TF-IDF
dimension.

Table 2: Results on five classification tasks. RF: Random Forest, LR: Logistic
Regression. TF-IDF dim.: >10K, MRNet-Product2Vec dim.: 256 and 128. All
numbers are relative w.r.t TF-IDF-LR.

Task MRNet-RF MRNet-LR TF-IDF-RF
Plugs -2.8% -9.72% -2.8%
SIOC -5.81% -18.60% -9.3%

Browse Categories -16.67% -26.38% -25.0%
Ingestible 0% +2.15% -11.8%

SIOC (unseen) +10% 0% -3.33%

4.2 Nearest Neighbor Analysis

We study the characteristics of MRNet-Product2Vec by analyzing the nearest
neighbors (NN) of several products. Since computing meaningful NNs is not
straightforward using the sparse TF-IDF features, we do not show the NNs using
this method. We created a universe of 220K products from the PG furniture and
computed the NNs of several randomly chosen products based on the Euclidean
distance. In Fig. 2, we show the first nine NNs of four hand-picked products.
In (a), MRNet-Product2Vec finds several grey colored tables as NNs. In (b),
several full-sized beds are obtained as NNs. In (c), MRNet-Product2Vec fetches
four blue-colored tables and two “drum barrel" tables as NNs. In (d), MRNet-
Product2Vec produces several tools/tool-boxes as NNs. Overall, we can see
that MRNet-Product2Vec has learned several intrinsic characteristics of products
such as size, color, type etc, which were used to train MRNet-Product2Vec.
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Fig. 2: Nearest neighbors computed using MRNet-Product2Vec for each query
product (first column) (best viewed in electronic copy).

4.3 MRNet-Product2Vec Feature Interpretation

MRNet-Product2Vec is trained with multiple tasks to incorporate different
product related signals. We performed some preliminary analysis on the PG-
agnostic embeddings (256 dimensional) to detect if a subset of features encode a
particular signal (such as size, weight, electrical properties etc.). First, MRNet-
Product2Vec is used for the battery classification task (one of our training tasks)
and multiple Random Forest (RF) models with randomly chosen subsets of the
training data are built. We found out that there are 29 features that always
appear in the top quartile (64) of all the features with respect to RF feature
importance. That indicates that these 29 features in MRNet-Product2Vec are
indicative of product’s electrical properties and some of these should play a role
in plugs classification (evaluation task). Indeed, we find that there are 28 features
which are important in the context of plugs classification and 8 of these features
were also important in the battery classification task. Likewise, we find that 13
important features for the weight classification training task are also important for
the SIOC evaluation task. This demonstrates that MRNet-Product2Vec encodes
different product characteristics which play a crucial role in the final evaluation
tasks.

5 Language Agnostic MRNet-Product2Vec

E-commerce companies usually sell products across multiple countries and
language-regions. There are many scenarios when it is important to compare
products that have details such as title, description, and bullet-points in different
languages. When a seller lists a product in a country, the e-commerce company
would like to know if that product is already listed in other countries for accurate
stock-accounting and price estimation. A customer from UK might like to know
if a product which she liked in the France website is available for purchase from
the UK website or not. Often it is also required to apply a trained ML model
from a particular language-region to a different language-region product because
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labeled data in that language may not be available. For each of these use-cases,
it is important to learn cross-language transformations, such that products from
different countries/language-regions can be compared seamlessly. To address
this issue, we propose to use a variant of multimodal autoencoder [8] that can
project MRNet-Product2Vec trained in different languages to a common space
for comparison.

Let us assume that we have P paired product titles from two different countries
UK and France, i.e., for each product title in French, we know the corresponding
UK title and vice versa. We separately train MRNet-Product2Vec for UK-english
and French and refer them as MRNet-Product2Vec-UK and MRNet-Product2Vec-
FR respectively. MRNet-Product2Vec-UK and MRNet-Product2Vec-FR are used
to obtain the embeddings for P products. The corresponding embeddings for the
p-th product are defined as xUK

p (dim. 256) and xFR
p (dim. 256) respectively.

Now, we train an autoencoder (Fig. 3a) which has input xp (dim. 512), output
yp (dim. 512) and a hidden layer of dimension 256. Let us assume that 0 denotes
a zero vector of 256 dimension. The training data for this network consists
of three parts: (1) xp = [xUK

p ,0] and yp = [0,xFR
p ], (2) xp = [0,xFR

p ] and
yp = [xUK

p ,0] and (3) xp = [xUK
p ,xFR

p ] and yp = [xUK
p ,xFR

p ]. We train the
autoencoder with batches of size 256, where each batch is randomly selected
from the full training data. The trained network is used to project a product’s
MRNet-Product2Vec-FR to the corresponding MRNet-Product2Vec-UK space.
The projected MRNet-Product2Vec-UK representation is used to find the nearest
UK products corresponding to a French product. We demonstrate a few French
products and their UK nearest neighbors in Fig. 3b. We could have also projected
the UK products to the French embedding space or project both of them to the
common shared space for comparison. Although the results are preliminary, this
demonstrates that we can use a multimodal autoencoder to effectively compare
embeddings from different language-regions.

MRNet-Product2Vec-UK

MRNet-Product2Vec-UK

Hidden	layer

MRNet-Product2Vec-FR

Training	Data	Split:
1/3rd Input:	[MRNet-Product2Vec-UK,	MRNet-Product2Vec-FR]		Output:	[MRNet-Product2Vec-UK,	MRNet-Product2Vec-FR]	
1/3rd Input:	[MRNet-Product2Vec-UK,	0000..0000]																									Output:	[0000..0000,	MRNet-Product2Vec-FR]
1/3rd Input:	[0000..0000,	MRNet-Product2Vec-FR]																										Output:	[MRNet-Product2Vec-UK,	0000..0000]

MRNet-Product2Vec-FR

(a) Architecture of Multimodal Autoencoder
(b) Nearest neighbors from UK products
w.r.to a French product.

Fig. 3: Language Agnostic MRNet-Product2Vec (best viewed in electronic copy).
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6 Discussion and Future Work

In this paper, we propose a novel variant of e-commerce product embeddings
called MRNet-Product2Vec, where different product related signals are explicitly
injected into their embeddings by training a Discriminative Multi-task Bidirec-
tional RNN. Initially, PG-specific embeddings are learned and then a PG-agnostic
version is learned using a sparse autoencoder. We evaluate the proposed embed-
dings qualitatively and quantitatively and establish it’s effectiveness. We also
propose a multimodal autoencoder for comparing products across different coun-
tries (i.e., languages) and provide initial results using that. MRNet-Product2Vec
has been applied to generate product embeddings of around 2 billion products
and have been made available internally within our company for product related
ML model building. We periodically retrain MRNet to keep the model updated
with the dynamic signals and also update the resulting embeddings of all prod-
ucts. We note that MRNet-ProductVec is suitable for cold-start scenarios as
the embeddings can be created using only product titles, which are available
as part of the catalog data. Although MRNet-Product2Vec has been trained
with the proposed set of 15 different tasks, the framework provides the flexibility
to learn embeddings with any other set of tasks or fine-tune the already learnt
embeddings with additional tasks.
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